
IP 核设计(Shift Ram)说明文档

1功能描述

输入一幅二值化后的图像,根据腐蚀算法,对图像进行腐蚀,从而去掉零散的边缘点,得到图像的骨干。

关于腐蚀算法的详细解释,请参考 refrence 目录下的《腐蚀膨胀算法详细解释.doc》。

在实现腐蚀算法时,我们需要用到连续几行的图像数据。但在 FPGA 中,图像数据通常是一个一个像素得到的,例如 FPGA 从摄像头采集到的数据顺序,如下图所示:

即 FPGA 先得到第一行的第一个像素,然后是第二个,直到第一行的第 640 个,接下来 是第二行的第一个。

为此,FPGA 必须保存连续几行的数据,然后再从中取每行的几个数据,从而得到运算的矩阵。FPGA 中,运用 shift ram 这个 IP 核即可轻松实现。

本工程实现一个 3X3 矩阵的腐蚀算法。该模块具有如下功能:

1) 模块内部包含一个 shift ram,用于存储 2 行的图像数据,从而得到 3X3 矩阵所需要的像素值。

- 2) 为设计方便,在运算前面两行的图像时,由于得不到 3X3 个数据,所以固定为 0。
- 3) 为设计方便,在运算前面两列的图像时,由于得不到 3X3 个数据,所以固定为 0。
- 4) 输入的图像是二值化后的 640*480 的图像(即一帧图像有 640*480 个像素,一行 640 个,共有 480 行),每个像素 1 比特。输入和输出信号定义,请看信号列表。

2 信号列表

信号名	I/O	位宽	说明
clk	I	1	50MHz 的写时钟
rst_n	I	1	复位信号
dat_in	I	16	输入的图像数据
sop_in	I	1	输入图像帧的第一个像素点指示信号。
eop_in	I	1	输入图像帧的最后一个像素点指示信号
soc_in	I	1	输入图像帖,每行的第一个像素指示信号
eoc_in	I	1	输入图像帖,每行的最后一个像素指示信号
vld_in	I	1	输入图像数据有效指示信号
dat_out	0	8	输出的图像数据
sop_out	0	1	输出图像帧的第一个像素点指示信号。
eop_out	0	1	输出图像帧的最后一个像素点指示信号
soc_out	0	1	输出图像帖,每行的第一个像素指示信号
eoc_out	0	1	输出图像帖,每行的最后一个像素指示信号
vld_out	0	1	输出图像数据有效指示信号